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part of a firewall, working on IP packet level (vs.
application level proxies or ethernet level bridges)

packet filter intercepting each I

P packet that passes

through the kernel (in and out on each interface),

passing or blocking it

stateless inspection based on the fields of each

packet

stateful filtering keeping track of connections,
additional information makes filtering more
powerful (sequence number checks) and easier

(replies, random client ports)
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OpenBSD included IPFilter in the default install

what appeared to be a BSD license turned out to be
non-iree

unlike other license problems discovered by the
ongoing license audit, this case couldn’t be resolved,
[PFilter removed from the tree

existing alternatives were considered (1iptw), larger
code base, kernel dependencies

rewrite offers additional options, integrates better
with existing kernel features
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Overview

» Introduction
= Motivation
m Filter rules, skip steps

m State table, trees, lookups, translations (NAT,
redirections)

» Benchmarks

= Conclusions
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linear linked list, evaluated top to bottom for each
packet (unlike netfilter’s chains tree)

rules contain parameters that match/mismatch a
packet

rules pass or block a packet

last matching rule wins (except for ’quick’, which
aborts rule evaluation)

rules can create state, further state matching packets
are passed without rule set evaluation
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transparent optimization of rule set evaluation,
improve performance without affecting semantics

example: ten consecutive rules apply only to packets
from source address X, packet has source address Y,
first rule evaluated, next nine skipped

skipping 1s done on most parameters, in pre-defined
order

parameters like direction (in, out), interface or
address tamily (IPv4/IPv6) partition the rule set a
lot, performance increase 1s significant

worst case: consecutive rules have no equal
parameters, every rule must be evaluated, no
additional cost (linked list traversal)
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TCP (sequence number checks on each packet),
ICMP error messages match referred to packet
(stmplifies rules without breaking PMTU etc.)

UDP, ICMP queries/replies, other protocols,
pseudo-connections with timeouts

adjustable timeouts, pseudo-connections for
non-TCP protocols

binary search tree (AVL, now Red-Black), O(log n)
even 1n worst-case

key 1s two address/port pairs
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Translations (NAT, redirections)

m translating source addresses: NAT/PAT to one
address using proxy ports

m translating destination: redirections (based on
addresses/ports)

» mapping stored in state table

m application level proxies (ftp) in userland
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one state entry per connection, stored 1n two trees

example: 10.1.1.1:20000 -> 62.65.145.30:50001 ->
129.128.5.191:80

outgoing packets: 10.1.1.1:20000 ->
129.128.5.191:80, replace source address/port with
gateway

incoming packets: 129.128.5.191:80 ->
62.65.145.30:50001, replace destination
address/port with local host

three address/port pairs of one connection: lan, gwy,
ext

without translation, two pairs are equal
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State table keys

m two trees: tree-lan-ext (outgoing) and tree-ext-gwy
(incoming), contain the same state pointers

= no addition translation map (and lookup) needed
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IP normalization (scrubbing) to remove
interpretation ambiguities, like overlapping
fragments (confusing IDSs)

reassembly (caching) of fragments before filtering,
only complete packets are filtered

sequence number modulation
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through bpft, virtual network interface ptlog0

link layer header used tor pf related information
(rule, action)

binary log files, readable with tcpdump and other
tools
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two (old) 1386 machines with two network interface

cards each, connectec

| with two crosswire Cat5

cables, 10 mbit/s unidirectional

tester: generate TCP

packets on ethernet level

through first NIC, capture incoming ethernet frames

on second NIC

firewall: OpenBSD and GNU/Linux (equal
hardware), IP forwarding enabled, packet filter
enabled, no other services, no other network traffic

(static arp table)
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Benchmarks: Packet generation

m TCP packets of variable size, random
source/destination addresses and ports

» embedded timestamp to calculate latency,

incremental seria

1 number to detect packet loss

m send packets of specified size at specified rate for

several seconds, print throughput, latency and loss

m verify that setup can handle maximum link rate

correctly
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rule set evaluation 1s expensive. State lookups are
cheap

filtering statefully not only improves filter decision
quality, i1t actually increases performance

memory cost: 64000 states with 64AMB RAM
(without tuning), increasing linearly

binary search tree for states scales with O(log n)
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Production results

® Duron 700MHz, 128MB RAM, 3x DEC 21143
NICs

m 25000-40000 concurrent states

m average of 5000 packets/s

» fully stateful filtering (no stateless passing)
m CPU load doesn’t exceed 10 percent

» (same box and filter policy with IPFilter was 90
percent load average)
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Questions?

m The OpenBSD Project: http://www.openbsd.org/
m Paper and slides: http://www.benzedrine.cx/pf.html
» dhartme1 @openbsd.org
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