Design and Performance of the
OpenBSD Stateful Packet Filter (pf)

Daniel Hartmeier

dhartmei@openbsd.org

Systor AG

Usenix 2002 — p.1/2:



part of a firewall, working on IP packet level (vs.
application level proxies or ethernet level bridges)

packet filter intercepting each I

P packet that passes

through the kernel (in and out on each interface),

passing or blocking it

stateless inspection based on the fields of each

packet

stateful filtering keeping track of connections,
additional information makes filtering more
powerful (sequence number checks) and easier

(replies, random client ports)

Usenix 2002 — p.2/2:



OpenBSD included IPFilter in the default install

what appeared to be a BSD license turned out to be
non-iree

unlike other license problems discovered by the
ongoing license audit, this case couldn’t be resolved,
[PFilter removed from the tree

existing alternatives were considered (1iptw), larger
code base, kernel dependencies

rewrite offers additional options, integrates better
with existing kernel features

Usenix 2002 — p.3/2:



Overview

» Introduction
= Motivation
m Filter rules, skip steps

m State table, trees, lookups, translations (NAT,
redirections)

» Benchmarks

= Conclusions

Usenix 2002 — p.4/2:



linear linked list, evaluated top to bottom for each
packet (unlike netfilter’s chains tree)

rules contain parameters that match/mismatch a
packet

rules pass or block a packet

last matching rule wins (except for ’quick’, which
aborts rule evaluation)

rules can create state, further state matching packets
are passed without rule set evaluation

Usenix 2002 — p.5/2:



transparent optimization of rule set evaluation,
improve performance without affecting semantics

example: ten consecutive rules apply only to packets
from source address X, packet has source address Y,
first rule evaluated, next nine skipped

skipping 1s done on most parameters, in pre-defined
order

parameters like direction (in, out), interface or
address tamily (IPv4/IPv6) partition the rule set a
lot, performance increase 1s significant

worst case: consecutive rules have no equal
parameters, every rule must be evaluated, no
additional cost (linked list traversal)

Usenix 2002 — p.6/2:



TCP (sequence number checks on each packet),
ICMP error messages match referred to packet
(stmplifies rules without breaking PMTU etc.)

UDP, ICMP queries/replies, other protocols,
pseudo-connections with timeouts

adjustable timeouts, pseudo-connections for
non-TCP protocols

binary search tree (AVL, now Red-Black), O(log n)
even 1n worst-case

key 1s two address/port pairs

Usenix 2002 — p.7/2:



Translations (NAT, redirections)

m translating source addresses: NAT/PAT to one
address using proxy ports

m translating destination: redirections (based on
addresses/ports)

» mapping stored in state table

m application level proxies (ftp) in userland

Usenix 2002 — p.8/2:



one state entry per connection, stored 1n two trees

example: 10.1.1.1:20000 -> 62.65.145.30:50001 ->
129.128.5.191:80

outgoing packets: 10.1.1.1:20000 ->
129.128.5.191:80, replace source address/port with
gateway

incoming packets: 129.128.5.191:80 ->
62.65.145.30:50001, replace destination
address/port with local host

three address/port pairs of one connection: lan, gwy,
ext

without translation, two pairs are equal

Usenix 2002 — p.9/2:



State table keys

m two trees: tree-lan-ext (outgoing) and tree-ext-gwy
(incoming), contain the same state pointers

= no addition translation map (and lookup) needed

Usenix 2002 — p.10/2:



IP normalization (scrubbing) to remove
interpretation ambiguities, like overlapping
fragments (confusing IDSs)

reassembly (caching) of fragments before filtering,
only complete packets are filtered

sequence number modulation

Usenix 2002 — p.11/2



through bpft, virtual network interface ptlog0

link layer header used tor pf related information
(rule, action)

binary log files, readable with tcpdump and other
tools

Usenix 2002 — p.12/2:



two (old) 1386 machines with two network interface

cards each, connectec

| with two crosswire Cat5

cables, 10 mbit/s unidirectional

tester: generate TCP

packets on ethernet level

through first NIC, capture incoming ethernet frames

on second NIC

firewall: OpenBSD and GNU/Linux (equal
hardware), IP forwarding enabled, packet filter
enabled, no other services, no other network traffic

(static arp table)

Usenix 2002 — p.13/2:



Benchmarks: Packet generation

m TCP packets of variable size, random
source/destination addresses and ports

» embedded timestamp to calculate latency,

incremental seria

1 number to detect packet loss

m send packets of specified size at specified rate for

several seconds, print throughput, latency and loss

m verify that setup can handle maximum link rate

correctly

Usenix 2002 — p.14/2:



»
S~
(2]
-—
o
X
o
©
£
)
—
©
S
(@)
=
=
)
o
)
S

400 500 600 700 800
sending rate (packets/s)

Usenix 2002 — p.15/2



+F
+F

++++++
I

o

»
S~
(2]
-—
o
X
o
©
£
)
—
©
S
(@)
=
=
)
o
)
S

812

400 500 600 700 800
sending rate (packets/s)

Usenix 2002 — p.15/2



1.4e+06

1.2e+06

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

812

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06

1.2e+06

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

961

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06

1.2e+06

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

1197

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06
58 bytes

1.2e+06

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

1586
2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06

512 byt
1.2e+06 r

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

2349

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06

1.2e+06

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

4528

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06

1.2e+06

1e+06

800000

600000

wn
=~
n
O
—
>
=3
—
)
Q.
<
(®))
>
()
-
£
—

400000

200000

8445

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2



1.4e+06

1.2e+06

1e+06

800000

throughput (bytes/s)

400000

p

600000 / /////
/

/)

200000

1488

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2




1.4e+06 I I
Local
OpenBSD ———

1.2e+06 GNU/Linux

1e+06

800000

throughput (bytes/s)

400000

/

600000 /
/
/

200000

2000 4000 6000 8000 10000 12000 14000 16000
sending rate (packets/s)

Usenix 2002 — p.16/2




iptables

wn
=~
n
h—
O
X
(@]
©
=t
—
-]
Q.
<
(®)}
>
()
-
£
e

2000 3000
sending rate (packets/s)

Usenix 2002 — p.17/2




iptables

ipf

wn
=~
n
h—
O
X
(@]
©
=t
—
-]
Q.
<
(®)}
>
()
-
£
e

2000 3000
sending rate (packets/s)

Usenix 2002 — p.17/2




iptables

ok

P
pf —

wn
=~
n
h—
O
X
(@]
©
=t
—
-]
Q.
<
(®)}
>
()
-
£
e

2000 3000
sending rate (packets/s)

Usenix 2002 — p.17/2




ilptables
ipf ——
pf —

n
~
n
h—
()
X
&)
©
£
—
>
Q
<
(@)
)
(@)
S
e
Jre—
£
)
E
x
©
S

400 600
number of rules

Usenix 2002 — p.18/2




n
~
n
h—
()
X
&)
©
£
—
>
Q
<
(®))
)
(©)
S
e
Jre—
£
)
E
x
©
S

10000
number of states

Usenix 2002 — p.19/2




rule set evaluation 1s expensive. State lookups are
cheap

filtering statefully not only improves filter decision
quality, i1t actually increases performance

memory cost: 64000 states with 64AMB RAM
(without tuning), increasing linearly

binary search tree for states scales with O(log n)

Usenix 2002 — p.20/2:



Production results

® Duron 700MHz, 128MB RAM, 3x DEC 21143
NICs

m 25000-40000 concurrent states

m average of 5000 packets/s

» fully stateful filtering (no stateless passing)
m CPU load doesn’t exceed 10 percent

» (same box and filter policy with IPFilter was 90
percent load average)

Usenix 2002 — p.21/2:



Questions?

m The OpenBSD Project: http://www.openbsd.org/
m Paper and slides: http://www.benzedrine.cx/pf.html
» dhartme1 @openbsd.org

Usenix 2002 — p.22/2:



	Introduction
	Motivation
	Overview
	Filter rules
	Skip steps
	State table
	Translations (NAT, redirections)
	State table keys
	State table keys
	Normalization
	Logging
	Benchmarks: Setup
	Benchmarks: Packet generation
	Local, reaching link limit
	Local, varying packet sizes
	Stateless, 100 rules, throughput
	Maximum throughput vs. rules
	Maximum throughput vs. states
	Conclusions
	Production results
	Questions?

